Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures

AFOSR grant #FA9550-10-1-0061 Program manager: Dr. Les Lee

PI: C.T. Sun
School of Aeronautics and Astronautics
Purdue University
West Lafayette, Indiana

AFOSR Annual Grantees' Meeting Arlington, VA August 2, 2012

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 02 AUG 2012			3. DATES COVERED 00-00-2012 to 00-00-2012				
4. TITLE AND SUBTITLE		5a. CONTRACT NUMBER					
Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures				5b. GRANT NUMBER			
				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)				5d. PROJECT NUMBER			
					5e. TASK NUMBER		
				5f. WORK UNIT NUMBER			
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Purdue University, School of Aeronautics and Astronautics, West Lafayette, IN, 47907				8. PERFORMING ORGANIZATION REPORT NUMBER			
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)			
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)			
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited					
Grantees'/Contrac Microsystems Held	otes and Multifunctional M tors' Meeting for Al 1 30 July - 3 August S. Government or I	FOSR Program on 1 2012 in Arlington, V	Mechanics of Mu VA. Sponsored by	ltifunctional	Materials &		
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 32	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

Wave Propagation in Elastic Solids With Negative Mass Density or Modulus

What would happen if mass or modulus becomes negative?

•Dispersion equation:
$$q = \omega \sqrt{-\frac{\rho}{E}} = i\beta\omega$$

•Wave attenuates:
$$u = Ae^{i(qx-\omega t)} = Ae^{-\beta\omega x}e^{i\omega t}$$

 β Is attenuation factor

Wave cannot propagate without attenuation in elastic solids with negative mass density or modulus

Metamaterials with Local Resonators

Metamaterials with Negative Effective Mass

Effective mass for mass-in-mass lattice

Negative effective mass

Wave attenuation

Acoustic Metamaterial with Negative Effective Young's Modulus

A Mechanical Unit Model and Its Representative Elastic Solid

Frequency-dependent Modulus (stress-strain curves)

Wave Attenuation in Metamaterial with Negative Effective Modulus

 Wave amplitude decays when its frequency falls inside the band gap, especially if frequency is near the frequency

Metamaterial with Double Negativity (DN)

Metamaterial with negative mass density (NMD)

Metamaterial with negative modulus (NEM)

Metamaterial with Double Negativity (DN)

Wave Propagation in Metamaterial with Double Negativity

Composite Materials Laboratory
School of Aeronautics and Astronautics

Double Positive Metamaterial

Double Negative Metamaterial

Derivation for Reflection and Transmission Coefficients

Assume

$$u_{i} = \hat{u}_{i}e^{i(\omega t - q_{1}x)}$$

$$u_{r} = \hat{u}_{r}e^{i(\omega t + q_{1}x)}$$

$$u_{r} = \hat{u}_{r}e^{i(\omega t - q_{2}x)}$$

$$\begin{aligned} u_i &= \hat{u}_i e^{i(\omega t - q_1 x)} \\ u_r &= \hat{u}_r e^{i(\omega t + q_1 x)} \\ u_t &= \hat{u}_t e^{i(\omega t - q_2 x)} \end{aligned} \quad \begin{cases} R \equiv \frac{\hat{u}_r}{\hat{u}_i} = \frac{E_1 q_1 - E_2 q_2}{E_1 q_1 + E_2 q_2} \\ T \equiv \frac{\hat{u}_t}{\hat{u}_i} = \frac{2E_1 q_1}{E_1 q_1 + E_2 q_2} \end{cases}$$

$$If E_1 = E_2, \rho_1 = \rho_2, \text{ then } R = 0, T = 1$$

$$If E_2 = -E_1, \rho_2 = -\rho_1, \text{ then } R = 0, T = 1$$

If
$$E_2 = -E_1$$
, $\rho_2 = -\rho_1$, then $R = 0, T = 1$

Material 2

Material 1 (Regular Material)

Material 2 (Metamaterial)

Material 1 (Regular Material)

$$E_{eff} = \frac{L}{A} \left[k_1 + (\frac{1}{2})(\frac{k_2 \omega^2}{\omega^2 - \omega_{0MOD}^2})(\frac{L}{D})^2 \right] \qquad \rho_{eff} = \frac{1}{AL} \left[m_1 + m_3(\frac{\omega_{0MASS}^2}{\omega_{0MASS}^2 - \omega^2}) \right]$$

$$\rho_{eff} = \frac{1}{AL} \left[m_1 + m_3 \left(\frac{\omega_{0MASS}^2}{\omega_{0MASS}^2 - \omega^2} \right) \right]$$

Material 1

Material 1 (Ordinary Material)

Material 2 (Metamaterial)

Material 1 (Ordinary Material)

$$E_{eff} = \frac{k_4 L}{A}$$

$$\rho_{eff} = \frac{m_4}{AL}$$

Dispersion Curve for Metamaterial

Material Design

Case 1:
$$\omega = 1200 (rad / s) \longrightarrow$$
 Frequency for double negativity

Case 2:
$$\omega = 650 (rad / s)$$
 \longrightarrow Frequency for negative mass

$$m_1 = 2.4 \times 10^{-4} (kg)$$
 $k_1 = 100.0 (N / mm)$
 $m_2 = 1.2 \times 10^{-4} (kg)$ $k_2 = 200.0 (N / mm)$
 $m_3 = 2.4 \times 10^{-4} (kg)$ $k_3 = 200.0 (N / mm)$
 $m_4 = 9.0 \times 10^{-5} (kg)$ $k_4 = 535.3 (N / mm)$

Case 1: Simulation Result in DN Region

 $\omega = 1200 \ rad / s$

Material 1 (Regular Material)

Material 2 (Metamaterial)

Material 1 (Regular Material)

$$t = 0.07 \ s$$

Distance in number of unit cells

$$t = 0.390 s$$

Distance in number of unit cells

$$t = 0.775 \ s$$

Case 2: Simulation Result in Negative Mass Region

 $\omega = 650 \ rad \ / \ s$

Material 1 (Regular Material)

Material 2 (Metamaterial)

Material 1 (Regular Material)

Distance in number of unit cells

$$t = 0.182 s$$

$$t = 0.301 \, s$$

$$t = 1.857 \ s$$

Distance in number of unit cells

Refraction of Metamaterials

2D Double-Negativity Metamaterial

Boundary Condition: Plane wave

Simulation Window (15x20 units)

NIVERSITY

Step: Step-1 Frame: 0 Total Time: 0.000000

Normal to interface

School of Aeronautics and Astronautics

DN

The state of the s

ODB: WaveProp_Gen.odb Abaqus/Explicit 6.13.11 Sai Jun 16 16:25:30 Eastern Davilight Time 2012

Step: Step-1
X Increment 0: Step Time = 0.0
Primary Var: U, Magnitude
Deformed Var: U Deformation Scale Factor, 18,000e 103.

Step: Step-1 Frame: Total Time: 0.000000

071e-03 898e-03 726e-03 553e-03 208e-03 903e-04 177e-04 451e-04 726e-04 000e+00 DP

ODB: WaveProp_Gen.odb Abaqus/Reduct Control State Control

Step: Step-1 Increment 0: Step Time = 0.0

Primary Var: U, Magnitude
Deformed Var: U Deformation Scale Factor +5.000e-f03

Simulation: Plane wave (DN region: 1)

Step: Step-1 Frame: 100 Total Time: 0.010000

Normal to interface

Simulation: Plane wave (DN region: 2)

Simulation: Plane wave (DN region: 3)

Simulation: Plane wave (DN region: 4)

Simulation: Plane wave (DP region: 1)

Simulation: Plane wave (DP region: 2)

Step: Step-1 Frame: 200 Total Time: 0.020000

Normal to interface

Simulation: Plane wave (DP region: 4)

Plane Wave Comparison: DN vs. DP

Double Negativity

Double Positivity

List of Publications

- •H. H. Huang and C. T. Sun, "Locally Resonant Acoustic Metamaterials with 2D Anisotropic Effective Mass Density," *Philosophical Magazine*, Vol. 91, No.6, 2011, pp. 981-996.
- •H. H. Huang and C. T. Sun, "A study of Band-gap Phenomena of Two Locally Resonant Acoustic Metamaterials," *J. Nanoengineering and Nanosystems*, 2011.
- •X. N. Liu, G. K. Hu, C.T. Sun, and G. L. Huang, "Wave Propagation Characterization and Design of Two-Dimensional Elastic Chiral Metacomposite," J. of Sound and Vibration, 330, pp. 2536-2553, 2011
- •X.N. Liu, G. K. Hu, G. L. H*uang,* and C.T. Sun, "An Elastic Metamaterial with Simultaneously Negative Mass Density and Bulk Modulus," *Applied Physics Letters,* 98, 251907, 2011.
- •H.H. Huang and C.T. Sun, "Behavior of an Acoustic Metamaterial with Extreme Young's Modulus," *J. Mechanics and Physics Solids*, doi:10.1016/j.jmps.2011.07.002, 2011.
- •R. Zhu, G. L. Huang, H.H. Huang, and C. T. Sun, "Experimental and Numerical Study of Guided Wave Propagation in a Thin Metamaterial Plate," *Physics Letters A*, 375, , 2011, pp. 2863-2867
- •H.H. Huang and C.T. Sun, "Continuum Modeling of a Composite Material with Internal Resonators," *Mechanics of Materials*, 46, 2012, pp.1-10.
- •Hsin-Haou Huang and C. T. Sun, "Anomalous Wave Propagation in a One-dimensional Acoustic Metamaterial Having Simultaneously Negative Mass Density and Young's Modulus," to appear in the Journal of the Acoustical Society of America, 2012

